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The method described by Futrelle and McGinty for the high speed computation of 
correlation functions, starting from the results of molecular dynamics experiments, is 
discussed and comparisons of computation times with the “direct” method are given. 
A further improvement of the method is described. 

1. INTR~DUOT~~N 

The development of large computers during the last two decades has made it 
possible to solve numerically the equations of motion of particles subjected to 
given intermolecular forces, thereby opening a wide range of new possibilities in 
the study of molecular models [l, 21. As the method of molecular dynamics makes 
available all the characteristics of the trajectory of the system in phase space, one 
can easily compute all its time-dependent properties and hence test the validity of 
the existing theoretical developments. At the present time, one can simulate not 
only simple systems like argon [3] and carbon oxide [4] but also more complicated 
ones like water [5], butane [6], and so on. 

A computer experiment usually proceeds in two steps [3]. With particle geometry 
and forces specified, the equations of motion are solved starting from well- 
chosen initial conditions; the time evolution of positions, velocities, angular 
momentum, etc., is recorded. The second step consists in the computation of the 
correlation functions. 

The relations between macroscopic properties of gases and liquids and 
correlation functions is well understood in many cases at present. It suffices, for 
example, to recall the link between the self-diffusion coefficient, the NMR line- 
width, or the dielectric permittivity and, respectively, the velocity [7], the angular 
momentum [8], and dipole-dipole [9] correlation functions. 

Zwanzig and Ailawadi [lo] pointed out that, in order to obtain reliable infor- 
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mation over the system under study, one not only has to extend the number of 
interacting particles as much as possible in order to approach a “macroscopic” 
system, but one also has to follow this system for times that are long compared to 
its internal characteristic times. 

On the other hand, recent theoretical developments concerning the long time 
behavior of the velocity autocorrelation function for fluids [ 11, 121 ask for a 
better knowledge of the tail of this function. 

Much work and time have been devoted to reducing the amount of computer 
time needed in the first step of the molecular dynamics methods, by choosing the 
more efficient algorithm to solve the equations of motion. Futrelle and McGinty 
[13] have shown how the use of fast Fourier transform techniques, developed in 
connection with signal processing [14, 151, can lead to a substantial computer 
time reduction in the determination of correlation functions. 

Unfortunately, this technique seems to have been overlooked by many people 
working in the field of molecular dynamics. The aim of this paper is to present 
a detailed comparison of the “direct” and “FFT” methods for computing auto- 
correlation functions. 

We confine ourselves to the velocity autocorrelation function although the 
method can be used to compute any other correlation function as well. 

2. THE METHOD 

The velocity autocorrelation function is defined by 

g(t) = C(v,(t) * vJt’ + t)). (1) 

Here vi(t) is the velocity of particle i at time t, (e..) denotes an equilibrium ensemble 
average and the normalization constant C ensures that g(0) = 1. According to 
ergodic theory the ensemble average can be replaced by a time average leading to 

g(t) = c 9% (l/T) /‘dt’ vi(t’) * vi(t’ + t). (2) 
0 

As a consequence of the convolution theorem the power spectrum of g(t) is given 
by the squared modulus of the Fourier transform of v(t) [16]. 

If the velocities of the ensemble of NP particles are only available over N equal 
time intervals dt then this last expression can be approximated by 

N-Z-l 

gum = (C/(N - 0) c Vi@ At) . vd(n + 0 4, I = 0, l,..., iv- 1. (3) 
?I=0 

The additional weight factor l/(N - I) accounts for the different number of pro- 
ducts contributing to each g(ldt). 
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It should be noted that the spacing dt used in the computation of g(Zdt) does 
not necessarily correspond to the time increment used to integrate the equations 
of motion but rather to an appropriate multiple of it: choosing dt too small would 
result in highly correlated contributions to g(Zdt), hence increasing the com- 
putation time without improving proportionally the precision of the results [Ill. 

The identical role played by the NP particles in an equilibrium situation enables 
us to average g(Zdt) over the entire system instead of observing the velocity of a 
single particle. One then obtains 

where 01 labels the x, y, z components of the velocities. 
In many modem molecular dynamics experiments N is chosen so that N di is 

much larger than the mean free time [l l] T: 

N&T N 100-200. (5) 

Eventually an additional average of (4) is made over a set of different 
initial states [ 111. 

Expression (4) is usually computed in a straightforward way requiring a com- 
putation time proportional to N2. A much faster method based on the convolution 
theorem combined with a fast Fourier transform algorithm has been described 
by Futrelle and McGinty [13]. 

It proceeds as follows. Let us focus on the contribution to g(Zdt) of one parti- 
cular component of the velocity of one particle, denoted by u1 , 

N-Z-l 

Let us introduce the discrete Fourier transform (DFT) of the velocity, defined by 

N-l 

6(k Am) = c v(n At) exp(in dt k Au), 
?I=0 

(7) 

where Aw = 27rfN At; with the help of the convolution theorem one obtains, 
after Fourier inversion, 

N-l 

g,(Z At) = (C/(N - Z))(l/N) C I b(k Aw)12 exp(--iZ At k Aw), 
k=O 

(8) 

where the continuation of vl with period T = N At is used. However, this proce- 
dure, as it stands, introduces spurious correlations in g(Z At). This can be avoided 
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by simply adding a set of N zeros to the known values of ur(n At) and extending T 
to 2N dt; the sum in (7) now contains 2N terms and (8) becomes 

2N-1 

g,(l At) = (C/(N - 1))(1/2N) C I 6(k LIoJ)~~ exp(-il dt k dw). (9) 
k=O 

Finally taking account of the linear character of the Fourier transform, g(1 At) 
is simply given by summation of g,-like terms over all particles and velocity 
components. 

The transforms are made by a fast Fourier transform algorithm [17, 151: the 
number of arithmetic operations for the whole procedure is then of order N log, N 
(see Section 4). 

A further improvement over the method of Futrelle and McGinty can be 
obtained by noting that the FFT transform of two real velocity components can 
be computed simultaneously. Indeed, let 01 = T(q) and /3 = T(v2), respectively, 
be the DFT of a1 and up . Introducing 

y(k dw) = T(v, + iv2) = a(k dw) + i/l@ dw) 

one immediately sees that 

I y(k dw)l” = I a@ Ou)l” + I BP WI2 
+ i[ol(--k dw) /3(/c dw) - cx(k dw) /3(--k dw)]. (11) 

The last two terms on the right-hand side of Eq. (11) represent the Fourier 
frequency components of the cross correlations between independent velocities 
which for a large system in equilibrium average to zero. For smaller systems, 
however, their contributions to I y(k L3w)j2 is nonzero. Simply symmetrizing 
I y(k ~~>12, 

I ys(k Au)12 = +(I y(k dw)12 + I A--k dw)122, (12) 

before taking the inverse DFT (IDFT) would lead to the right result. However, 
this last step is unnecessary when considering a real function g(t) as can be seen by 
direct inspection of the IDFT of 1 y(k dw)12. The IDFT of the two spurious terms 
of (1 l), leads to a complex vector with a rigorously zero real part. Consequently, 
their contribution to the real part of g(ldt) is zero. 

3. FEATURES OF THE MODEL 

The input data used for testing the program originated from a molecular 
dynamics experiment on an ensemble of rough spheres. This model is of particular 
interest as it is perhaps the simplest one showing a transfer of rotational to trans- 
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lational energy. It is hoped that, for such a problem as rotational relaxation, it can 
play the same role as the hard sphere model does in the approach of simple liquids. 

This model has already been used to study the dipole-dipole autocorrelation 
function and the dielectric permittivity in two and three dimensions [18, 191. Its 
full description as well as the connection with the rotational J diffusion model 
[20, 211 is out of the scope of this paper. We merely use this model as a base of 
comparison of the computation time for the autocorrelation function either when 
straightforward calculations are performed or when the Fourier transform 
algorithm described above is used. 

For completeness we mention that the system consists of 108 particles placed 
in a cubic box with the usual periodic boundary conditions [19], which is followed 
in time over 3000 time intervals. 

4. THE COMPUTER PROGRAM 

The general outline of the program, which was written for a CDC 6400 computer 
in Fortran IV Extended, is as follows. 

A table of the N required complex exponentials is constructed by a high speed, 
high accuracy algorithm [22]. 

The information about the dynamics, i.e., the velocity components of the 
particles, is transferred from tape or disc to the high speed central memory of the 
computer. Considerations on internal data treatment and available memory core 
lead to an optimum of the velocity components which are simultaneously read in. 
Note that every component has to be known over the complete time interval. 

A complex vector of length 2N is constructed, the first N elements of which 
contain the entire information about two independent velocity components in 
their real and imaginary parts, respectively. The last N elements are filled up 
by zeros. 

This complex vector is transformed using a FFT subroutine based on the 
algorithm of Cooley and Tukey [17] as described by Singleton [22]. 

The next step then consists in taking the squared modulus of each 
component y(k d w). 

The whole procedure is repeated until all velocity components of all particles 
have been treated. 

The FFT algorithm quoted in [22] has the peculiarity of displaying the Fourier 
components y(k dw) in the “bit reversal” order. A reordering of the terms is, 
however, not needed after each transformation. It suffices to reorder the final 
vector only once, just before taking the IDFT; the real part of the resulting time- 
dependent vector corresponds to the required correlation function after suitable 
normalization. 
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5. DISCUSSION 

The specific FFT algorithm which is used operates on vectors of dimension 
N = 2”. We have made a comparative study of the computation times for g(Z dt) 
for values of m ranging from 6 to 11. These results, expressed in seconds (central 
processor time) are given in Table I. 

TABLE1 

Computation Ties of g(mdt) in Seconds (Central Processor Time) 
with N = 2” as the Number of Points 

m 
Straightforward 

N computation FFT technique 

6 64 27 21 
7 128 88 41 
8 256 306 89 
9 512 1143 182 

10 1024 4412 364 
11 2048 - 760 

As quoted above, straightforward computation of N values of the correlation 
function by expression (4) requires times proportional to Na, whereas the corre- 
sponding computation time, using a FFT technique with N = 2”, is essentially 
proportional to mN [14, 171. More precise values for the total number of floating 
point operations, when treating the three-dimensional case with NP particles are 
quoted in Table II. When comparing these values to the formulas established by 

TABLE II 

Number of Real Operations” in Computing g(mdt) 

Straightforward FFT 
computation technique 

Real multiplications 

Real additions 

1.5N(N + 1)NP 

1.5N(N - 1)NP 

4(1.5NP + I)[(m - 1)N + 11 

2(1.5NP + 1)[(3m + 1)N + 11 

a Not including the arithmetic operations needed in addressing. 
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Bergland [23], one should keep in mind that here (3NP/2) + 1 vectors of dimension 
2N are transformed. Examination of Tables I and II shows the important gain in 
computer time this method pemits. 

It is to be stressed, however, that one is not always interested in knowing the 
correlation function over long times; intervals of roughly three of four charac- 
teristic decay times should, in many applications, be sufficient. Long time study of 
the dynamical behavior of the system is then done only in order to increase 
the accuracy through better statistics. In these situations the computation time 
of g(ldt) in the straightforward calculation decreases drastically. Indeed if NM 
is the maximum number of values for which one wishes g(Zdt) to evaluate, then 
the number of arithmetic operations reduces to 3NP, (N x NM - (NM2/2) + 
(NM/2)) floating point multiplications, and 3NP, (N x NM - (NW/2) - (N&f/2)) 
additions. For a typical situation, where N = 2048 and NM = 200 one is left 
with approximately 1.26 x IO8 multiplications (and a similar number of additions) 
compared to 6.80 x 10s for NM = 2048; the actual computation takes 3480 set; 
this last value is still 4.6 times larger than the time required for the complete com- 
putation of g(Z dt) using the FFT technique. 

For these calculations of g(l dt) with limited NM, the computation time, which 
goes linearly with N, will ultimately be shorter than the time required when using 
the FFT technique. Straightforward computation will be faster for m = log, N 
greater than NM/2. If one wants to know g(ldt) over say 50 time intervals this 
will happen when 

N > 225 N 3.4 x 10’. 

In this context, what is perhaps a more important limitation is the core storage 
requirements for very long runs. The method as it stands implies that the complete 
time span of only two dynamical variables has to be held simultaneously in storage. 
Should this be impossible, then an auxiliary memory technique of the form 
described by Singleton [24] must be used. 

A last aspect, important for the comparison of these two methods, is the question 
of errors. It appears that CDC-60 bits arithmetics leads in our test case to a 
maximum absolute discrepancy of lo-l1 between the results of the two methods; 
this is many orders of magnitude inferior to the statistical errors [I I]. So, as far as 
errors are concerned, the methods are equivalent. 

In conclusion, one can say that the FFT method, combined with a proper choice 
of the interval between two “time origins,” appears to be accurate and very fast; 
even in these applications, where the autocorrelation function is computed 
over a time interval which is short compared to the total time over which the 
dynamical variables of the system are known, the method keeps its advantageous 
features. 
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